Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 277: 121117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517277

RESUMO

Scaffolds functionalized with bone morphogenetic protein-2 (BMP-2) have shown great potential for bone regeneration. However, structural instability and the necessity for supra-physiological dose have thus far limited practical applications for BMP-2. Protein modification and site-specific covalent immobilization of BMP-2 to carrier materials might be optimal strategies to overcome these problems. Here, we report a broadly applicable strategy where the polyhistidine tag-T4 Lysozyme (His6-T4L) was genetically fused at the N-terminus of BMP-2 and used as a protein spacer, which on one hand enhanced protein solubility and stability, and on the other hand mediated site-specific covalent anchoring of BMP-2 upon binding to nickel-chelated nitrilotriacetic acid (Ni-NTA) microparticles (denoted as MPs-His6-T4L-BMP2) to further maximize its rescued activity. We also constructed a novel gelatin-based hydrogel that was crosslinked by transglutaminase (TG) and tannic acid (TA). This hydrogel, when incorporated with MPs-His6-T4L-BMP2, displayed excellent in-situ injectability, thermosensitivity, adhesiveness and improved mechanical properties. The effective loading mode led to a controlled and long-term sustained release of His6-T4L-BMP2, thereby resulting in enhancement of bone regeneration in a critical-sized bone defect. We believe that the protein modification strategy proposed here opens up new route not only for BMP-2 applications, but can be used to inform novel uses for other macromolecules.


Assuntos
Proteína Morfogenética Óssea 2 , Hidrogéis , Proteína Morfogenética Óssea 2/genética , Regeneração Óssea , Gelatina
2.
Biomaterials ; 274: 120895, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020269

RESUMO

The development of recombinant protein cross-linked injectable hydrogels with good mechanical strength and effective drug loading capacity for bone regeneration is extremely attractive and rarely reported. Here, we report the fabrication of a smart hydrogel delivery system by incorporating a rationally designed T4 lysozyme mutant (T4M) to mediate the localized delivery and synergistic release of Mg2+ and Zn2+ for bone repair. Apart from its intrinsic antibacterial properties, T4M bears abundant free amine groups on its surface to function as effective covalent crosslinkers to strengthen the hydrogel network as well as exhibits specific binding affinity to multivalent cations such as Zn2+. Moreover, the integrin receptor-binding Arg-Gly-Asp (RGD) sequence was introduced onto the C-terminus of T4 lysozyme to improve its cellular affinity and further facilitate rapid tissue regeneration. The final composite hydrogel displays excellent injectability, improved mechanical properties, antibacterial activity, and unique bioactivities. The effective loading of Mg2+/Zn2+ in the hydrogels could mediate the sequential and sustained release of Mg2+ and Zn2+, thereby resulting in synergistic enhancement on bone regeneration through modulation of the MAPK signaling pathway. We believe that the strategy proposed in this paper opens up a new route for developing protein cross-linked smart delivery systems for tissue regeneration.


Assuntos
Hidrogéis , Magnésio , Regeneração Óssea , Íons , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...